Tetrahedron Letters No. 24, pp 1889 - 1892, 1975. Pergamon Press. Printed in Great Britain.

A NOVEL ALDEHYDE SYNTHESIS BASED ON A "NUCLEOPHILIC CARBENE" OF THE <u>B</u>-TRIAZOLE SERIES, AND A NEW METHOD FOR THE DEGRADATION OF \prec -HYDROXYACIDS.

Gábor Doleschall

Research Group of Alkaloid Chemistry of the Hungarian Academy of Sciences, 1111 Budapest, HUNGARY

(Received in UK 2I April 1975; accepted for publication 23 April 1975)

As has been shown mainly by Wanzlick et al., $^{1-5}$ "nucleophilic carbenes" are readily formed from a variety of heterocyclic cations. 3-Methylthio-1,4--diphenyl-<u>e</u>-triazolium iodide ($\underline{1}$)^{6,7} - obtained in 71 % yield, m.p. 244-5°, according to a new method by treating 1,4-diphenylthiosemicarbazide succesively with methyl iodide and triethyl orthoformate in DMF -, when treated with excess NaH/DMF at 0°, furnished a similar "nucleophilic carbene" ('<u>2</u>). The presence of <u>2</u> (or of its dimer <u>2a</u>) in the DMF solution (from which the NaI formed has been filtered off) is proven (Scheme 1) by the typical carbene reaction (cf. Ref. 2) with benzaldehyde to yield <u>4</u>, as well as by the reaction with 1 mole of benzoyl chloride at 0° and subsequent treatment with KI aqu. to yield <u>2⁸</u> ('70 %, mp.: 212-4°, \forall C=0 1675 cm⁻¹); the latter was reduced with NaBH₄ to yield <u>4</u> (39 %, based on the amount of benzoyl chloride, mp.: 149-50°) which was identical with an authentic sample obtained by allowing to react 3-methyl-1,4-diphenylisothiosemicarbazide and phenylglyoxal (98 % yield). When refluxed with EtOH, <u>3</u> furnished 72 % of ethyl benzoate and 67 % of <u>1</u>.

When DMF solutions of $\underline{2}$ were treated with primary halides and aqu. KI, 3-alkyl-5-methylthio-1,4-diphenyltriazolium iodides ($\underline{5}$) were obtained (see Table 1). The latter were reduced and hydrolysed by known methods^{9,10} to the corresponding aldehydes.

The above procedure is an alternative to the Corey aldehyde synthesis,¹¹ which does not require the use of an inert gas atmosphere, and in the final step of which the aldehyde is liberated by simple acid treatment.

1889

R-X	za/	<u>5</u> ∣ mip.	R-CHO % ^{a/}
MeI	7.6	254 - 56 ⁹	45 ¹²
EtI	66	218-20 ¹⁰	52
n-BuI	76	221-23	79 ^{b/}
C1CH2CH2COOMe	43	232-234 ¹⁰	30°/
PhCH ₂ Cl	7 2	183-84	44 ^{c/}
втсн ₂ сн ₂ сн ₂ с1	42 ^{d/}	252-54 ^d /	26 ^{e/}
		1	

a/ Based on the amount of the alkyl halide

b/ Without isolation of the intermediates

c/ Isolated in form of the 2,4-dinitrophenylhydrazone

d/ 5, R = cyclopropyl, formed by deprotonation of the initially formed cation 5 (R = Cl-C₃H₆-) by excess 2 to the corresponding anhydrobase¹⁰, and subsequent intramolecular alkylation

e/ R = cyclopropyl.

In addition, a novel mild method was discovered for the degradation of \prec -hydroxyacids to the corresponding aldehydes containing one carbon atom less (Scheme 2). The triazolium iodides 6 (R = Me and Ph; m.p's. 192-3 and 163-5°, ¹⁴ yields, based on the corresponding \prec -acetoxyacyl chlorides, 68 and 43 %, respectively) were obtained according to a known method⁹ and proved to be stable under acidic conditions. They are, however, decomposed even by a catalytic amount of Et₃N to $\frac{1}{2}$ (89 %) and the aldehydes¹² in 73 (R = Me) and 57 % (R = Ph) yield, respectively.

6 (R = Ph) is decomposed also by simple heating at 170° to $\frac{1}{2}$ (95%)

and PhCHO¹² (75 %); the <u>O</u>-acetyl derivate of the latter (mp.: 224-5°; 53 % yield, based on \propto -acetoxyphenylacetyl chloride), when treated with Et₃N in anhydrous MeOH at r.t., furnishes the same products in 65 and 89 %¹² yield, respectively.

When treated with NaH in anhydrous DMF for 48 hrs at r.t., $\underline{6}$ (R = Ph) furnished 35 % of $\underline{4}$. When the reaction mixture was acidified with AcOH immediately after the evolution of H₂ had ceased, and subsequently treated with KI aqu., $\underline{1}$ and benzaldehyde¹² were obtained in 76 and 80 % yield, respectively, proving thereby that the addition of $\underline{2}$ to benzaldehyde is a reversible process.

The known intermediates and products were identified by comparison with authentic samples, and the new products were characterized by microanalyses, IR and NMR spectra.

References and Notes

- 1./ H.J. Schönherz, H.W. Wanzlick: <u>Chem. Ber. 103</u>, 1037 (1970), and earlier references cited
- 2./ H.W. Wanzlick: Angew. Chem. 74, 129 (1962)
- 3./ H. Quast, S. Huenig: Chem. Ber. 99, 2017 (1966)
- 4./ C.J. Cooksey, D. Dodd, M.D. Johnson: J. Chem. Soc. [B] 1380 (1971)
- 5./ H. Prinzbach, E. Futterer in <u>Advances in Heterocyclic Chemistry</u> Vol 7 (edited by A.R. Katritzky and A.J. Boulton), Academic Press, New York, 1966, p. 122
- 6./ K.T. Potts, S.K. Roy, D.P. Jones: J. Org. Chem. 32, 2245 (1967)
- 7./ M. Busch, J. Schneider: <u>J. prakt. Chem</u>. [2] <u>67</u>, 250 (1903)
- 8./ The isomeric structure, in which the iodine is covalently bonded to C-3, has not been ruled out for this compound in the crystalline state.
- 9./ G. Doleschall: Tetrahedron Letters, 2649 (1974)
- 10./ G. Doleschall: Tetrahedron Letters, in press
- 11./ E.J. Corey, D. Seebach: Angew. Chem. Intern. Ed. 4, 1075, 1077 (1965)
- 12./ Isolated in form its condensations product¹³ with 6-(2-aminophenyl)-3--methylthio-1,2,4-triazin-5(2<u>H</u>)-one.

13./ G. Doleschall, K. Lempert: <u>Tetrahedron</u> <u>29</u>, 639 (1973); <u>30</u>, 3997 (1974)
14./ When rapidly heated.